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Abstract. In this paper we introduce wavelet video processing of proximity sensor signals. Proximity sensing is
required for a wide range of military and commercial applications, including weapon fuzing, robotics, and
automotive collision avoidance. While our proposed method temporarily increases signal dimension, it
eventually performs data compression through the extraction of salient signal features. This data compression
in turn reduces the necessary complexity of the remaining computational processing. We demonstrate our
method of wavelet video processing via the proximity sensing of nearby objects through their Doppler shift. In
doing this we perform a continuous wavelet transform on the Doppler signal, after subjecting it to a time varying
window. We then extract signal features from the resulting wavelet video, which we use as input to pattern
recognition neural networks. The networks are trained to estimate the time varying Doppler shift from the
extracted features. We test the estimation performance of the networks, using different degrees of nonlinearity
in the frequency shift over time and different levels of noise. We give the analytical result that the signal-to-noise
enhancement of our proposed method is at least as good the square root of the number of video frames,
although more work is needed to completely quantify this. Real-time wavelet based video processing and
compression technology recently developed under the DoD WaveNet program offers an exciting opportunity to
more fully investigate our proposed method.

1 Introduction

Proximity sensing involve detectig the presencd oearly objecs in a systens eavironment In rada or
sona sensorsthis includes not oglthe transducig of electromgnetc a acoustt enegy to electricasignals but
also the procesap of thege sgnak in orde to extrat usefu information. Tk sesa signak may al® ke images
for exampé those fram gynthetc apertue radar In such casewe can extrat informaton in both spazand time.

In this pape we propose a nol/vaveld video based method of prasng proximity sensor ghals In
proximity sensing, interestg sign& structures ae usudly localized. Wavelé representabins ae therefore ideal
sine they have bbtspatid and temporhlocalization. Tle proximity-sensig problen coutl then le seen sithe
recognition of any pdterrs anong the time varyig wavelé transfom codficients d the sensosignd that may
indicate the presencd objects.
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In our schene we place a widow d fixed width ove the incoming signal 0 as © locdize the processg
nea the presentime We ten perfom a @ntinuows waelet transform on the gnd within the window, resultng
in an image bthe transform As the sgnd window then moves forwad in time the carespnding sequere d
transfom image forms a video Fram this wavelé transfom videq we then extracfeature as iput to patem
recognition algorithrm sut as aiificial neural networks.
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Fig. 1 Generation of wavelet transform video from time varying proximity sensor signal, to provide neural
network features. Temporary expansion of dimensionality allows us to extract salient features, leading to
reduced computational complexity.

The processig of vide dat in red time is onsiderd to ke somewhaimpractica given the curert state
of technology. A sut the uility of sud procasig in real-world pplications woull ssem b be limited
However recem developmentstalrident Systemsincorporatd have made ailable real-time wavelet prossig
of videq in the fom o the WaveNet tdmology". Also, in the future a varief of fag architecturs for conputing
waveld transforns ae likely to ke developed.

Besides in ou proposd schemgwavelg processing is not a particular coputatond hindrance but
rathe dlows sdient featurs o be extracted v the wavelet cdicients. Becaue d the qudity of the wavelet
features it is likely tha fewe inputs ae needed for gem recognition. i this sense auschene coutl be
considerd to ke a fom a data compsesbn. In particular it seens o be a fom o data compresbn thd is ided
for patem recognition.

The multiresolubn natue d waveles also #ows us b explore the tolerance foimprecisbn in the
processig of sgnals This povides the freedom to tidor the degin of the sesa to the resolutbn requiemens o



the spnak beng procesed This tolerane d imprecison is in the spiri of fuzzy logig but n this case th
imprecison is in the scalefahe sgnd structure rathe than in the memberspid sets.

The importam idea is tha usefu information in signad is generly found & the larger scake (lowe
frequencies) The less usefulsmdler scaé spnd structure can therefoe be disregardedNeglecting unnecssay
detals alows a reductin in the amounof da@a © be processed This in turn reduce the complexiy of the
processig, leadng to improvemeistin procasing time systen size and systen cost.

This reductdbn of daa throgh the explicit ue d scak is a powerflform o data compreson. Wlile
there ae severhothe strategis far data compresbn, this ore ha the alvantage bbeing based on the extramti
of signd features Throwgh waveleé transfom time integratin, a sigle coefficiem provides the carelation
between the gind and a waveleat a particular scaland time shift Waveles ae known to provide good sigha
features far patem recognition algoriths sud as artificid neural networks Indeed, natutessensoss sut & eyes
and eas cary out wavelet-tyg processig.

The ontinuots wavelé transfom dfectively increass the dimensinality of the spnd representation
from one b two. Wiile this might caus some oncen a first glance it is redly not a problem The reasn is
that the wavelet representati will be used to extracsignd features only. Thig the pdtem recognition neuta
networlks reed not sfier from the “curse 6 dimensondity.” After al, the extracted featuseae d a sihgle
dimenson only, ® tha the increasen dimensionkity is ony temporary. hdeed becaus d the high qudity of
wavele featuresit is quie psibke thd fewa features will be neededand thd reamgnition performane will be
improved.

Many systers hae the need to semdhe proximily of objecs in ther environment Fa example one @
the first applications 6 rada was as a proximjt sensor for rfitary fuze$. Proximity sensings also wide}
applied in manufacturing automation and robaticdviore recently thele ha also leen a sting interes in
proximity sensing for automdb cdlision avoidance.

(b) ()

Fig. 2 Example applications of proximity sensing: (a) detection of targets for military fuzing, (b) manufacturing
automation and robotics, and (c) automobile collision avoidance.

In the nex secton, we introdue an important tye d signd for proximity sensing, namely, éhDqple
signal We go on to describhow tle Dplea signd can be used to detédhe presene d nearly objects In
Sectbn 3 we $ow the @ontinuows wavele transfom representatin of sensosignals and contrasit with othe
waveld¢ and Fourie representabns We al® show how faswavelet daoising algorithns can dramaticly
improve sgnd quality, which leads ® enhanced recognition performancehen in Secton 4 we denonstrag how



features extractd from wavelet-generadevideo can & used along with nedraetworks © improve proximiy
sensing. Findy, in Section 5 w sunmariz ou work and drav conclusions.

2 Doppler Signals for Proximity Sensing

Active proximity sensos sud as raday acoustic, ad lada detet objects ly first emitting energy waves
then receiving the gind from the reflected waves These sesois can then procss tle eto sgnd in orde to gan
information abotl the objects An important type d information fo sud sensoss is tle change m frequecy of the
edo signalrelative b the entited signal The frequeng shift is proportond to the relative velocjt between the
objed and the sensor This is thke well-known Dopple efect. A faniliar exampé d the Dqple effect is the
noticeabé change n whistke pitch asa tran passe by.
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Fig. 3 Doppler effect: (a) Doppler induced change in frequency between transmitted and reflected signals for
active sensors, and (b) familiar example of Doppler effect is change in pitch as train passes by.

2.1 The Doppler Shift and Its Relation to Relative Velocity

It is wdl known in electromagneti¢csacoustics, r@d optic thd if eithe the soure a observer ban
osdllating wave & in motion, tle osdlation frequency ppeas © shift This shit is the Dqple efect. In the
cae d proximity sensing, th source iad observeare boh located in the sensofThe Dple dfect then arises
from the relative motin betveen the sens@nd the sensed object.

Let us derive the D@pla frequeng shift and the corespnding relative velocit between sensor ral
object Assune tha the distance between the sanand objet is R. The totd numbe of radiaton wawelengths
A ove the transntied and reflected paths is th@R/A . Sin@ one wavelengt A caresmpnds b an angula
phag d 2T, the totd phag @ is 4R/ A. The rate 6 change h ¢ with time t is the axgula Dopple

frequeny w, , which is then

w,=2nf, =——=——= . 1
d dodt A dt A @




Here f, is the Dgple frequeng shift and v. is the relative velocit of the objec¢ with respetto the sesor. The
Dopple frequeny shift f, then becomes

=——, (2)

where f, is the transniied frequency ad C is tre velociy of radiaton propagation. Tehrelative velocit v,
correspnding to ths frequeng shift is then

vV, =EEBf—d 3

R 0Of,

Thus ve can calculag the relative velogt v, between the senscand an objet from measuremestd the
Dopple frequeny shift .

2.2 Direction to Sensed Object from Doppler Shift

We ca also calcula the direcbn to the objecfrom measuremestd the Dple frequenyg shift.
Figure 4 siows a sensoand an objecto be sensed We assune they ae gpproachng & a mnstant velocityv ,

with the orign fixed & the sesor. The relative velocit v, can be written as
v, =|V|cosf =vcosh, (4)

where 6 is the angle towad the object The angle @ is then calculated as
6 = cos* (5)
av o

This calculatn require a vale d the manitude v = |\7| of the goproad velocity V, which can fe estimated o

measumg the relatie velociy v, a a distane sifficiently large than the closesapproad distane a . In fact

if we have reliable measuremenf v and the time b close$ approad between sensorra object we can
calculat a as

. —vt
@ cot()’ ©)

with t =0 at the time d close$ approach.
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Fig. 4 Geometry for sensor and object over time.

2.3 Utility of Doppler Shift in Proximity Sensing

While the kinematis we jug describd are somewhtidedized, the generabehavio does hol true in
mog cases At suficiently large distances betsn the sensand an objectboth the relative velocjt and the
carespnding Dopple frequeng shift asymptoticly approad a onstant As the objet later passe nea the
sensor the relative velocit decreaseswith the frequeng shift decreasig proportionately. Ténnearer th objet
passe the sensqrthe more nonlinaais the change n Dopple frequeny shift ove time. This generbbehaviar is
shown in Figue 5.
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Fig. 5 Change in Doppler frequency over time as an object passes near proximity sensor.

Proximity sensos can take avantageof this behavio in orde to gain information abdusensd objects
For example the gpproat of Dppler frequeng shift to zero indicate tha the objet is & its closest distarmc
from the sensar Another example aabe tken fran the nilitary weamn fuzing problem Here the optimbavalue
of @ for fuzing is known to be



0 =tan* (vfrag /v), (7)

where V., is the velociy of the warhed fragments Note thd this is ndependentfahe closes gpp road distane

a . The fuzng problen is then to estimag the D@plea shift ove time, and to detona when the shifreachs its
optimd value.

3 Wavelet Representation and Denoising of Doppler Signals

The Fourier transfornsithe cornersine d signd processing. However, sireit lacks time locdization, it
is less suite to the processg of sgnak whos frequencies cimge ove time. The time-depedent (o windowed)
Fourig transform lochizes time by doing the transfon ove a window, which shifts in time Unfortunately, th
width of the window b fixed ove the entire transfornwhich causs problemsri the hgh-frequeng limit®,

In contrast a wavele transfom has a whdow whog baxdwidth varies in proportion to the center
frequeny of the wavelet This is the so-cded constan® propery from electrichengineerng. The resit is that
the wavelet transfon performs time-scal processig rathe than time-frequency prossing. Also, wavele
transforns dlow more freedomn the toice d basis 0 tha the bas$ functbns ca be bette matche to the
shape bthe sgnal.

The wavelet transfon provides the locd scale & the sgnd over time, which for Dgpler signak is the
locd period or nvere d frequency Wavelée representatins d the D@ple signd are particulay necassay in
the cae d closely passing objects for which the chage n frequencys moe abupt The® representains ae
also convenient whethe sjnd is embelded in nonstationary noise.

In the remaide of this secibn, we first explain the @vantage d the mntinuots wavelé transfom ove
the discrete transfar for patem recognition problems We then formby introduce the ontinuows wavelé
transform and show howti generate a two-dimensind representation (imagdor proximity sensing Dopple
signals We perfom the transfom with the real-valued Mortewavelef, which is wél matchel to the Dopler
signak d interest We al® contras this transfom to the time-dependent Fouri¢ransform wih a Gabo
window’. To improve performance faoisy signals we gply a fas wavelet-base denoising algorithm.

3.1 Advantages of Continuous Wavelet Transform for Pattern Recognition

Mallat’s multiresolutbn analysi® leads ¢ discreteorthogonh waveles & dyadt scals and shifts
implementd via tre efficiert pyramd algorithm The® discret waveles hae been stcessfu in many
applications particulary dat compreson. However, discretwaveles hawe limited utlity for patem recognition
problems This is because interastj signé structurs ae not onstraind to follow sud power-of-two pterns
In particular discree wavelet transfon codficients ae shift-variant which in generhcauss problems fo
patem recognition.

In contrastthe ontinuows wavele transfom has codficients & all scales and shifts not jus dyadt ones
The ontinuows transfom therefoe ha the desirable propertof shift invariance Anothe advantage b
continuots wavelets is thahey have less stngent requirements fadmasiklity , which dlows a wide choice d
bask functons They also have the gsilility of beng bass functbns fa adaptive wavelet networks.



Through the inclusin of dl scales and shifts the mntinuows wavelé transfom dfectively increass the
dimensondity of the sgnd representation. Thas, the representain is ma@ © be a functon of two variable
rathe than one We noe thd the discrete wavelet transfarintroduce no such increasin dimensionkty, sine
the number btransfom codficients is the same & the number bsignd sample points This is because ¢h
discrete wavelet transforempbys an orthonormhbbasis ratheritan an overcomplete frame.

However the fad that we are usig the ontinuows wavelé transfom codficients merey for feature
extractbn means thave need not & plagued by the curséiacreasd dimensionbty. In particular the godis to
use ony the relativey few codficients tha provide the besfeatures In fact the use dsud high quéity features
may wdl mean tha fewe inputs ae ultimatey needed for géem recognition. ® course the® high qudity
features ae al® likely to improve tie performancefdhe neur&dnetworks In this sensgethe temporay increag in
dimensionéity could actully improve compressi qudity, a least wha measured with respgeto recognitbn
performance.

If we disregad the sste d dimensondity, it might still be argued thaconputatn of the discrete wavelet
transfom is fastey which has complexiy O(n). However, a entinuows wavelé transfom implementd via the

fag Fourig transform ha complexiy O(nlog n), which is stll quite aceptabd far many goplications Also, a
continuots wavelé transfom has the potenal for massive pardlelism.

3.2 Continuous Wavelet Transform and Contrast to Gabor Transform

The mntinuots waveletransfornt F, (a,b) of a sgnd f (t) is given by
12 ¢ -b
F(ab)=a¥2(" fwH—"Hita>0. 8
Wap)=a™ [ flpE_—x ®)

Here a and b are scale ad shit parametersrespectively.A necessay and sificient condition for Eq. (8) © be
invertible is tha t,l/(t) satisfies the wavelet admissility condition

[I¥@) |of " do<oo, ©)

where tJJ(a)) is tre Fourier transformfot,l/(t). If t,l/(t) has reasonaklsnoothnes and decay tinfinity, which is
usudly the case, th admissiliit y condition can b written as

[ w(tat=o0. (10)

Unde certan conditions it is possib¢ o reconstruc f(t) from sample d F, (a, b) taken ona hyperbolic
lattice. The cdlection of wavelé functions t,l/(%) ove this ldtice is then said to constiteta frame A frame in

contras to a basisis an overcomplet set This redundant representat dlows moe flexiklity in the doice d
inputs O patem recognition neutanetworks In particular we are not enstraine to the power-of-tw scals
characterist o the discrete wavelet transform.



We thoos far t,l/(t) the red part of the Morlet wavelet, which is

— Re(e—iwote—tZ/Z): COS(th)e_tZ/Z, (11)

with w, =71v2/In 2= 5336, which is a standat value The red Morlet wavelet § a Gassian-nodulate

sinusoid, whib is wdl suited to procesig sinusoidaDopple signals The wavelet transfon with the reha
Morlet is sinilar to the time-dependent cosifFourier transform wit a Gabot (Gaissian-shapgdvindow. This
type d Fourieg transform $ also ched the Gabptransform and is given by

Hw, b= J’ f()codwt)e " 2qt . (12)

For comparisn, we can write the wavelet transforin Eg (8) as
W', Y= J’ (Ycodw'(t- blle ke f e “dt, (13)

where w' =w, /a. Fa the Gabo transformi Eq. (2), the width of the window W, given by
_ 01 >
WG = eXpH E (t - b) E (14)

remairs fixed However, fo the wavelet transfon in Eq. (L3) the window widh W, , given by

O _n 0
W, = exp[-l—l t b O (15)
g 2 &

varies inversey with the frequeng w' =w, /a. Thus the frequeng bandwidth of tk wavelet widow varie in
proporton to w', through the nvere scding propery of Fourig conjugae variables Also, the cosine ten
Cos[w'(t - b)] for the wavelet transfon shifts in time abng with the wndow; through the shif parameteb . In
contrast for the Gabo transform onf the wndow shift in time and the cosine ten remairs fixed.

3.3 Fast Wavelet Denoising

To improve performare fa noisy Dopple signals we gply Donohos O(n) waveleé denoising
algorithnf. The aborithm firs does tre discret wavelet transfon with Malat’s pyramil algorithni. The
pyramd algorithm compute the transfom for sone J dyadc levek d scale resultng in vectos d detal and
smooh wavelé codficients d, ,d,,...,d ;_;,d;,s,. The aborithm the shrinks tle detd coefficients for scales

j£J-1to obtainal,az,...,dJ_l. Here theaj are

aj =0,,,(d;), (16)



where 9, (X) is a nonlineathredold shrinkage funatin given by

o if | X|Ao
= 17
9000 = Hioneo(I x| =Aa) i [x b Ao (17)

This thresha shrinkage funatin is sown in Figue 6.
5/\0 (X)

-A\O

Fig. 6 Nonlinear threshold shrinkage function for wavelet denoising.

The thredold shrinkage funatin J,, (X) is parameterize by a threlold A and an estima& d the

stendad deviation of tk noisec . We use a universal thiesic’ A; =4/2log(N), whee N is the number b

datasamples Fa o we use the medmabsolu¢ deviatbn, whid is a rdug estimatbn of staadaid deviation.
Findly, the denoisig algorithm compute the inverse discrete wavelet transfor using the new cdécients

d,,...,d,,,d;,s;. This resuls in a non-parametiestima¢ d the sgnd withou the noise The entie walet
denoising algorithm$ sown in Figue 7.
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Fig. 7 Wavelet denoising algorithm.



For the discrete wavelet transfarin the denoisig algorithm we gply a siper-Haar wavelét which is a
linear superpositbn of shiftel Haar wavelets The super-Haar scling function go(t) is given by

o)=3 s@.(t-k). (18)
where s, are integer cdéicients and @, (t) is the Haar sching functiori®, given by

()_m t0[01)

~Ho, tofoa) (19)

We gply the particula super-Haar n which s, = [],2,2,1].

3.4 Simulations

Figure 8 $iows pure noisy, aad denoised versiond a simulatd Dopple signal The closest{aproad
distane a is sut tha the change n frequencys nean linea ove time. We assune that tle shusod anplitude
is onstant ovetime, which is gopropriat ove the dhort distance gplicable b proximity sensing.
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Fig. 8 Doppler signals: (a) pure, (b) noisy, and (c) denoised.

Figure 9 $iows the mntinuows wavelée transforns d the three gjnak in Figure 8 Figure 10 siows the
sane three transformsusing a surfae pld rathe than a graysca image. Th wavelet transforenshow tle
increag in locd signd scale ove time In this case the increagj sign& scale § tte increasig period of tb
frequency-modulatel sinusoid.
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Fig. 9 Continuous wavelet transforms (grayscale image): (a) pure, (b) noisy, and (c) denoised signals.
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Fig. 10 Continuous wavelet transforms (surface plots): (a) pure, (b) noisy, and (c) denoised signals.

The time-scale structurd the Dple signd is visudly apparen to sone exten in the transfan o the
noisy signal However, fi sampls d the noiy transfom were used a neuré netwok inputs far proximity
sensing, th hgh-frequeng fluctuations woud resul in poor performanceThe® fluctuatons ae largey removed
by the wavelet deising, whit will result in much improved performance.

4. Proximity Detection with Wavelet Video Features and Neural Networks

The ontinuows wavelé transfom carelates a D@ple signd with time-locdized waveles & various
scales and shifts It gives thechange n locd signd scale ovetime, which in this cased the Dple period or
invere frequency When a noving window & place on the inconnig Dopple signd and the whdowe signa is
waveld transformed the carespnding time-varying transfon imagey constitute video Sample d this
wavelet-generatk video ove time then fom sgnd features for patem recognition neutanetworks The®
networls ae then trained to extra¢che Dmple frequeny shift ove time This frequeng shift is criticd

information for proximiy sensing.



The ntinuots wavele¢ transfom oonstitutes a frane rather tha a basis Sud a redadant
representatin dlows moe flexihlity in the selectin of sgnd features In terns d the mos$ dficient signd
representation, thesfeatures shodlbe orthogonal However, sut a representatn in whid the features ar
completey independentsi less rbud with respetto noie immunity and faul tolerance The searh for the bes
representatin is therefoe a tradedfbetween redundancy and robusigé

We extrat the Dple shift with feedforwad mulilayer neura networks known as mulilayer
perceptron€. After conputing the ontinuows wavelé transfom o the denoisé Dopple signal we sample t@
transfom codficients to provide iputs far the mulilayer perceptrons The networls ae trained with the
Levenberg-Marquatdule to provide the Dpple shift at a give time This rue is a powerflgeneréization of
gradien descent that empys an gpproximaton of Newbn's mehod. I is mut faste than standard gradient
descent gjorithims sut as backpropgaton, alhough t does requie moe menory.

In the remaide of this sectbn, we first descrile tre architecturerad traning algorithm we empby for te
patem recognition neutanetworks We then show simulains tha denonstraé the impovement &ered by
signd features take from wavelet-generadevideo. Fin#ly, usihg wavelet-generated video featyrege how
patem recognition performalcfar the estimatn of time-varyng Dopple shift. We sow ths performane for
differert degees ®nonlineariy in the shif ove time, as wdl as performane fa differert levek d noise.

4.1 Architecture and Training for Pattern Recognition Neural Networks

Figure 11 &ows the neurd netwolk architectue we empy for Daople frequeng estimation. Th
netwok is comprisd of 3 layes d artificial neurons an input layer a mddle a hidden layer, and an ouput layer
Signak flow forward through the networktha is, from input laye to hidden laye to ouput layer This
architectue is known as a mulilayer feedforwad network, o multilayer perceptron.

Weightsfor
hidden neurons

Weightsfor
output neuron

Output

neuron
(linear)
Inputs
Hidden
neurons
(sigmoidal)

Fig. 11 Neural network architecture for proximity sensing pattern recognition.

The input neuon laye in Figure 11 perforra no procssing; it merel provides means focaupling the
input vectos 1 the hdden layer The neuons n the niddle laye sum the weghted netverk inputs along with an
internd bias far eat neuron, the goply the nonlineasigmoida activation function



olv,)= tanIH/E ((Le 3 (20)

where v, is the weghted sum for neuron j . This sgmoidd nonlinearity limis the neuon outputsa (-1,1). Tl

single ouput neuon conputes the wephted sum o the ouputs d the hidden nheuronsalong with its interndbias
without applying the sigmoidafunction.

The architectureni Figure 11 5 known to ke a universal functionpproximatot?, tha is it can represent
an arbitrary function arbitrély well, given a sdficient numbe of neurons n the hdden layer The particula
function maping thd the netwok perforns is determing by the valuesfahe weghts betveen neuron laysrand
the intern&dneuron biases.

Various learnilg algorithns exist fo conputing the netwdt weights and biase fa a given problem The
mog popular learnng algorithm $ backwad eror propagatn™, which atempts 6 minimize the squaredrer of
the netwok through gradient descemt\iveight spaceWe can define tie error synd for neuronj as

e(n=d (n-vy, ), (21)

where n indexes the trainng vectors d; (n) is the desired respoada neuron j , and y; (n) is the actuhoutput

. _ 1 .
of neuon | . The instantaneavalle d the sun of square arors > ej2 (n) ove al neurons n the ouput laye

of the netwok can then b written as

E(N=15 &), (22)

where the setC includes dl neurons n the ouput laye and N is the number bvectors in the trainng set The
squared eor averagd ove dl training vectos is then

Edv—%N E(n). (23)

n=.

The average squaredrer E, constitutes a cosfunction thd is © be minimized It is minimizel goproximatey
by iteratively reducingE(n) for eat training vector The carecton Aw; (n) to be gplied to weight w; (n) is
then defined by the dedtrule
JE(n)
Aw.\n)=-n——5, 24
jl( ) r’ 6\N-i (n) ( )

J

where 1 is a parametetha determine tre rate 6 learnng. The minws sgn in Eq. 24) resuls in gradient
descentn weight spacethd is wephts ae noveal in the @posie directon of tre erra gradient.



We gply a powerfli generalization of backwdraror propagatn known a the Levenberg-Marquatd
weight updag rulé®. This ruk can be written in matrk notatbn as

AW = (37341 ) 0T, (25)

where AW is the matrk of weight updatese is tre err@ vector, ad J is the Jacobia matrk of derivatives o
ead aror to eachweight If the parameteu is vey large Eq. @3) goproximats gradiendescent, wike if U is
smdl it becomes the Gags-Newbn method.

The Gags-Newbn methods faste and moe accurae nea an eror minimum The idea $ therefoe ©
shift towards Gauss-Newin & quickly as possible The parameteru is thus decreadeafte eat swccessfu

step and increased only when a gtimcreass the error. Tle Levenberg-Marquatdipdag rule 8 known to tran
networks mul mote quickly than standard backwardrar propagatin. However,tidoes requie more memory
usudly a factad of C* N more whee C is the number boutput neuons aad N is the number btraining
vectors.

4.2 Signal Features from Wavelet-Generated Video

We now deronstrae the impovement m patem recognition performaecthd wavelet-generatkevideo
featurs can provide We begh by showng how waveletransfom feature outperfom bot time-domain ad
frequency-domai ones far classifying signas according to frequency. n particular we tes the alility of patem
recogniton neurénetworks o classify signas as eithebeing eithe alove o belov a certan threshold frequency,
in the presencd ooise.

Figure 12 $&iows pdtem recognitbn performane ushg 3 dfferent signd representations foneura
netwok input waveléd transfom codficients, time-doman samplesand Fourie transform coificients. A variety
of frequencie wee used for ta tes signals equdly distributed abou the thresold frequacy. The netvarks were
trained to determine whetherettsgnd frequencie wee belav (output d zero) ¢ alove (ouput d oné the
thredold. Becaus d the binay natue d this experiment the networls wee madea have sigmoidarathe than
linear activatbn functions The noige was white Gawssian with signal-to-noie ratb of -1 dB.

Threshold Threshold Threshold

Network Freguenc Network Freguenc Network Frequenc
q y q y q y
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Fig. 12 Frequency classification performance using (a) wavelet, (b) time-domain, and (c) frequency-domain
features.



We see frmm Figure 12 tha classificatbn performane fa wavelg features is béter than for either time-
doman or frequencydoman features In particular for the timedoman feature thee are may
misclassificatons d the lowes frequenciesand & frequencis just alove the thrdsold. Also, fa the frequency-
doman featurs thee are may misclasificatons neathe thresiold.

If we look moe carefilly at Figure 12, ve see thiaat tte highe$ frequenciesand & frequencis just belav
the thredold, performane is slightly beter for time-doman features than for wavelé features Also, d the lowes
and highes frequencies performane is slightly beter for frequencydoman featurs than for wavel¢ features
Interestingly, it appeas tha the wavelet transfon has formel a compromis between the timend frequeng
domains m which overd classificaton performane is improved.

Now tha we have demnstrate the siperia frequeny classificatbn performane d waveld featureswe
can investigag which wavelé transfom codficients might provide the besfeatures far estimating time varyig
Dopple shift. Ore fundamenthissie is whetheto sampé from a sihgle time shif of the transformor to sampé
ovea multiple shifts While samgling from a single shit complete} locdizes time which is alvantageosi in sone
applications samfing ove multiple shifs gives dditiond information tha may improve estimatin performance
Also, samfing ove multiple shifts provides a degee d reduindang tha will likely improve performance fonoisy
signals.

As a tes of single-shif versis multiple-shif features we used each tgpd feature as input to a patter
recogniton neuréinetwork Fa single-shit featureswe used 32 sam@ef the @ntinuows wavelé transfom o
the Dpple signal taken ove variouss scales taa shgle time shift Fa multiple-shit features we used 16
sample d the transfom a the origind time shift and 16 moe samplestaan addition&time shit of 6. Figure 13
shows the samping schere far the multiple-shit case.

NN input vectors NN input vectors
16 scale
samples
16 scale
g samples
from time
shift of 6
Training inputs Testing inputs
(puresignal, every (distorted signal,
4th time shift) all time shifts)

Fig. 13 Samples of wavelet-generated video for inputs to pattern recognition neural networks.

We trained the neuraetworls with sample d transforns d pure Dgple signals samfing only evey
4™ time shit of the transform Fa training ouputs we supplied the know instantaneai frequeng of the pue



signak far ead time shift Thus he netvorks were traned to estimi tre i nstantaneaufrequeng of the Dqopler
signals given sampls d their waveld transform.

After training for frequeng estimation, & tested the netwoskwith transforns d denoisel versions b
noisy Dopple signals The networls wee tested for every timghift of the transformwith a noie level ¢ —2 dB.
Figure 14 &iows the tes results It is obvious thaperformane is mud bdter for the case bsamping wavele
codficients ove multiple time shifts.

Dopple Shift
Estimation
Dopple Shift
Estimation

| U Time \ Time

(@) (b)

Fig. 14 Estimation performance for time varying Doppler shift: (a) sampling at single scale of wavelet
transform, and (b) sampling from wavelet generated video. Smooth lines show true Doppler shift over time.

We poirt out that samjng ova multiple time shifs versus santipg a only a shgle shit constitutes true
image sampng, sine boh scaé and shit variables (two dimensions are sampled When the D@ple signd
window is then moved forward in timewe have sequencd nages ove time, tha is, we have video In ou
simulatbns we sample frm this wavelet-generatievideo. h particular for ead wavelé transfom image in the

sequene thda forms videq the samples mvide an estimate via neural networksdf the instantane@i Dqpler
shift carrespnding to the image.

4.3 Performance for Time Varying Doppler Shift Estimation

We have jusdenonstratd the effectivergs ¢ features extractd from wavelet-generadevideo. V\& now
ted the patem recogniton performane d sud featurs in the estimagn of time varyng Dopple shift from noisy
sensor gnals In particular we sample the wavelet videss show in Figue 13, ue the samplessaneur&
netwok inputs and then train the netwoskio estimag¢ the D@ple shift We tes performane far different
degees 6 nonlineariy in the Deple shift ove time, as wdl as far differert levek d noise.

Figure 15 &ows netwok tes results fo various sgnal-to-noig ratios whee the Dople signd
frequeny decreaseneary linearly ove time, carespnding to a relativel large closestygproat distancer . The
networls wee tested for every tienshit of the wavelet transform Sine the network wee trained with onyl
evely 4" sample this shovs thei ahlity to generize o othe frequencies Netwok performane is relativey
good, but degradewith decreasing signal-to-neisatb as woull be expected Figure 16 siows simlar network
performane far smdler a , which correspnds © a moe pronounce nonlineariy in the frequeng shift ove time.
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Fig. 15 Estimation of Doppler shift using features from wavelet-generated video and pattern recognition neural
networks (nearly linear change in shift over time): (a) signal-to-noise ratio of —0.5 dB, (a) signal-to-noise ratio of
—2 dB, (a) signal-to-noise ratio of —4 dB.
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Fig. 16 Estimation of Doppler shift using features from wavelet-generated video and pattern recognition neural
networks (nonlinear change in shift over time): (a) signal-to-noise ratio of —0.5 dB, (a) signal-to-noise ratio of —2

dB, (a) signal-to-noise ratio of —4 dB.

Analyticdly, for a sgnd in which the frequenccontent $ mnstant ovetime, and assumng white noise
the spnal-to-noi® enhancementf wur proposd method of proasing is a facto of \/W , wheee N is tre
number & video frames However, m ou experience for signak with time varyng frequeng componentsor
when the noig is nonstationary,raimprovement exaedng this \/W can be xpected A more detdled analyss is

necessarto furthe quantify this.

5 SUMMARY AND CONCLUSIONS

The value 6 this pape is © introdue the processg of proximiy sensor gjnak throgh wavelé
generatd video. Wlie temporaily increasing signd dimension through a representatiin both sca and shift
the mehod ultimately perform dat compreson through the extracin of sgnd features This reducton of cata
in turn reduce the overd computatond complexity Moreover existng hardwae and softwae developed unde
the DA WaveN¢ program can potentidly provide a testbe in which to furthe evaluaé ths mehod. Becausd
the many important niitary and commerciaapplications ® proximity sensing, ti is worthwhle to pursue ttg

work.
We denonstratd o mehod of vid® procesing by detecting the proximgitof object throwh ther

Dopple shift. We placed a tim varyng window ove the Dgople signal then performed a antinuows wavelé
transfom on the widowal signal We then extracted sighgeatures fram the resulthg wavelé videq which we



usal as input to pdtem recognition neutanetworks The netvorks were hen traned to estimi@ the tine varying
Dopple shift from the extracted features.

We tested the estimati performane d the networks for differert degees ® nonlineariy in the
frequeny change ovetime, and for dfferert levek d noise We gae analytichresuls indicatig that tle signal -
to-noise enhancementf our proposd methods$ beter than the squareaot d the number bvideo frames though
more wokk is reeded to completely quantify thisOu main purpog & this poirt is o demonstra the uility of
using waveles o redue the corputationd complexiy of video procesing, & gplied to proximity sensing.
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